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ABSTRACT
We imagine agent “planning” programs as programs built from
achievement and maintenance goals. Their executions require the
ability to meet such goals while respecting the programs’ control
flow. The question then is: can we always guarantee the execution
of such programs? In this paper, we define this novel planning-
programming problem formally, and propose a sound, complete
and optimal wrt computational complexity technique to actually
generate a solution by appealing to recent results in LTL-based syn-
thesis of reactive systems.

Categories and Subject Descriptors
I.12.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms
Theory, Verification, Algorithms

Keywords
Agent programming, planning, synthesis, LTL, model checking

1. INTRODUCTION
Agent planning programs are agent programs whose atomic in-

structions are requests for achieving a goal while maintaining some
conditions. They come from merging two traditions in AI research:
automated planning and agent-oriented programming.

Automated planning [4] allows the specification of behavior in a
declarative manner, thus providing an abstract, flexible, and pow-
erful mechanism that caters for flexible behavior: any conceivable
way of achieving the desired outcome may be constructed. On the
other hand, agent-oriented programming [18, 8, 9, 13] accommo-
dates useful “know-how” domain knowledge encoding the typical
operations of the domain, allowing agent systems to better focus
their reasoning and “act as they go.” Interestingly, the advantages
of each of the two approaches are the weaknesses of the other.
Automated planning is intrinsically difficult computationally, espe-
cially in its advanced forms [4, 14], since plans are built from first-
principle, and it is not tailored for long-term behavior in chang-
ing domains, where the actual behavior depends on contingencies.
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Agent-oriented approaches, on the other hand, typically rely en-
tirely on procedural knowledge that ought to be crafted at design
time: no “new” plans can be generated.

In this paper, through the notion of agent planning programs,
we propose a novel account that mixes programming with plan-
ning, thus leveraging on the advantages of both approaches. In
concrete, we assume a dynamic domain D describing the dynam-
ics of the world as usual in planning and reasoning about actions,
and an agent planning program T that is meant to be “realized”
in D. Technically, the program T is a transition system in which
states represent choice points and transitions specify pairs of main-
tenance and achievement goals that the agent may decide to follow
at each step of the program. Namely, at any point in time, the do-
main and the program are in some states, and the agent decides,
autonomously, which program transition to request, thus specify-
ing a goal to achieve next (e.g., be at work), and at the same time
some maintenance constraints (e.g., never run out of fuel).

In order to actually realize a transition in the program, a plan
needs to be synthesized. At execution time, each requested tran-
sition activates the execution of the corresponding plan. The key
point is that after the execution of the plan, a new request is issued
and a plan for it must be available. In other words, in synthesizing
the plan for the transitions we need to take into account that the re-
sulting state of the domain must allow for the execution of the plans
corresponding to the next transition, and so on, possibly forever.

Under this framework, the problem of concern is the following:
can an agent planning program be realized in the dynamic domain?
That is, can each of the possible options in the program that the
agent may autonomously choose be always guaranteed?

Technically, agent planning problem cannot be realized by re-
sorting to planning techniques developed within the planning com-
munity. Solving, that is, realizing, such planning programs requires
temporally extended plans that loop and possibly do not even ter-
minate, analogously to [6, 15]. To synthesize such plans, we resort
to synthesis techniques developed for Linear-time Temporal Logics
(LTL) [12, 11].

When it comes to building agents, the advantages of using agent
planning programs are twofold. First, agents can be thought and
designed in terms of declarative goals, without the need to specify
the detailed procedural information needed on how to bring about
the agent’s goals. As already accepted in the literature, declarative
goals provide several advantages, including decoupling plan exe-
cution and goal achievement, facilitating goal dynamics and plan
failure handling, enabling reasoning about goal and plan interac-
tion, and enhancing goal and plan communication [19]. Second, the
declarative goals can be combined to encode the dynamics and re-
lations among such goals that the agent designer/programmer may
have available. More concretely, the target program restricts the op-
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tions that will be available next once the (current) goal is brought
about. This provides indeed a way of specifying procedural knowl-
edge of the domain, but at a higher-level of abstraction than what
typical agent programming languages do.

The rest of the paper is structured as follows. In Section 2 and 3,
we introduce agent planning programs, the corresponding realiza-
tion problem and a full fledged example. In Section 4, we briefly
review some results on LTL synthesis via model checking of game
structures. In Section 5, we develop a sound, complete, and opti-
mal (from the computational complexity point of view) technique
for realizing agent planning programs exploiting such results. In
Section 6, we consider the case in which agents may act on the do-
main only through available actuators/devices. We show that this
sophisticated extension can be reduced to the basic setting. We
conclude the paper in Section 7 with a brief discussion.

2. THE FRAMEWORK
Our framework consists of two main ingredients: (i) a (possibly

nondeterministic) dynamic domain, formalizing the environment
that the agent acts in; and (ii) an agent planning program, providing
a high-level representation of the desired domain evolutions.

Definition 1 (Dynamic Domain). A dynamic domain, or environ-
ment, is a tuple D = 〈P,A, S0, ρ〉, where:

• P = {p1, . . . , pn} is a finite set of domain propositions. A
state is a subset of 2P ;

• A = {a1, . . . , ar} is the finite set of domain actions;

• S0 ∈ 2P is the initial state;

• ρ ⊆ 2P ×A× 2P is the transition relation. We freely inter-
change notations 〈S, a, S′〉 ∈ ρ and S

a
−→ S′ in D. �

A D-history is a finite sequence of the form τ = S0 a1

−→

S1 · · ·S�−1 a�

−→ S� such that (i) Si ∈ 2P for i ∈ {0, . . . , �}; and

(ii) Si ai+1

−→ Si+1 in D, for each i ∈ {0, . . . , � − 1}. Informally,
D-histories stand for the possible evolutions of D starting from a
state S0. The set of all possible D-histories is denoted by H.

Given a dynamic domain D, a general plan is a (possibly partial)
function π : H �→ A that outputs an action given a D-history. For

finite sequences τ = S0 a1

−→ S1 · · ·S�−1 a�

−→ S�, we define
|τ |

.
= � + 1, and for infinite ones, |τ |

.
= ∞. Given a (finite or

infinite) sequence τ = S0 a1

−→ S1 a2

−→ · · · , we denote, for 0 <

k < |τ | + 1, its k-length finite prefix as τ |k = S0 a1

−→ · · ·
ak−1

−→
Sk−1. An execution of a general plan π from a state S ∈ 2P is a,

possibly infinite, sequence τ = S0 a1

−→ S1 a2

−→ · · · such that (i)
S0 = S; (ii) τ |k is a D-history, for all 0 < k < |τ | + 1; and (iii)
ak = π(τ |k), for all 0 < k < |τ |.

Observe that an execution τ of a general plan can be infinite, i.e.,
|τ | = ∞. When all possible executions of a general plan are fi-
nite, the plan is called a conditional plan. The set of all conditional
plans over D is referred to as Π. Note that, being finite, executions
of conditional plans are D-histories. A finite execution τ such that
π(τ ) is undefined is a complete execution—the execution cannot
be extended further. In the following, we shall only consider con-
ditional plans and refer to them simply as “plans.”

Next, we introduce the second component in our framework,
namely, agent planning programs, which are meant to be high-level
specifications of desired agent behaviors in terms of declarative
goals.

Definition 2 (Agent Planning Program). An agent planning pro-
gram, or simply a planning program, for a dynamic domain D is a
tuple T = 〈T,G, t0, δ〉, where:

• T = {t0, . . . , tq} is the finite set of program states;

• G is a finite set of goals of the form achieve φ while main-
taining ψ, denoted by pairs g = 〈ψ, φ〉, where ψ and φ are
propositional formulae over P ;

• t0 ∈ T is the program initial state;

• δ ⊆ T × G × T is the transition relation. We freely inter-
change notations 〈t, g, t′〉 ∈ δ and t

g
−→ t′ in T . �

When an agent planning program is realized, a typical session is as
follows: at any point in time, the planning program is in a state t
and the environment in a state S ∈ 2P (initially, states t0 and S0,

respectively); the agent requests a transition t
〈ψ,φ〉
−→ t′ in T ; then, a

plan π is executed from S which eventually leads the environment
to a state that satisfies achievement goal φ, while only traversing
states satisfying maintenance goal ψ; upon plan completion, the
agent planning program moves to t′ and requests a new transition

t′
〈ψ′,φ′〉
−→ t′′ in T , and so on. Notice that, at any point in time, all

possible choices available in the agent planning program must be
guaranteed by the system—every legal request needs to be satisfied.

Next, we formalize agent planning program’s semantics. Con-
cretely, we shall define when a planning program is realizable in a
domain, that is, when a agent planning program can always be exe-
cuted by continuously fulfilling the agent’s requests in the domain.
To do so, we first need to introduce some technical notions.

We say that a D-history τ = S0 a1−→ S1 · · ·S�−1 a�−→ S�

achieves goal φ if S� |= φ. Similarly, τ maintains goal ψ if Si |=
ψ, for every i ∈ {0, . . . , � − 1}. Such notions can be extended to
conditional plans in a straightforward manner. A conditional plan π
achieves goal φ from state S if all of its complete executions from
S do so; and π maintains goal ψ from S if all of its (complete or
not) executions from S do.

We now have all the technical machinery to define the notion of
PLAN-simulation relations.

Definition 3 (Plan-based Simulation Relation). Let D be a dy-
namic domain and T an agent planning program. A (contingent)
plan-based simulation relation, or PLAN-simulation relation, is a
relation R ⊆ T × 2P such that 〈t, S〉 ∈ R implies that for each

transition t
〈ψ,φ〉
−→ t′ in T , there exists a plan π such that:

1. π achieves φ and maintains ψ from state S; and

2. for all π’s possible complete executions from S of the form

S0 π(τ |1)−→ · · ·
π(τ |�)−→ S�, it is the case that 〈t′, S�〉 ∈ R. �

We say that a plan π preserves relation R from 〈t, S〉 for a given

transition t
〈ψ,φ〉
−→ t′ in T if requirement 2 above holds.

Observe the strong similarity of the above definition with the for-
mal notion of simulation relation [10]: PLAN-simulation relations
can be seen as kinds of high-level simulation relations, where tran-
sitions are realized by plans, rather than single action executions.

So, a planning program state t ∈ T is plan-simulated by a D-
state S ∈ 2P , denoted t 
PLAN S, if there exists a PLAN-
simulation relation R such that 〈t, S〉 ∈ R. Clearly, 
PLAN is a
PLAN-simulation relation itself and, in particular, the largest one.
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Finally, a planning program T is realizable in a dynamic domain
D if t0 
PLAN S0.

Intuitively, that an agent planning program is realizable means
that all potential requests can be fulfilled by a conditional plan.
Of course, such requests cannot be arbitrary, they need to respect
the planning program’s structure. Observe that an adequate plan
(i.e., one witnessing the existence of a plan-based simulation re-
lation), might in fact not be the shortest one. Indeed, the shortest
plan to reach the achievement goal may actually prevent to fulfill
future goals in the program. When the agent planning program is
indeed realizable in a domain, one can build a function that, if at
any point in time the environment reaches state S and the program

requests a transition t
〈ψ,φ〉
−→ t′ in T , outputs a conditional plan π

that (i) achieves φ while maintaining ψ when executed from S;
and (ii) guarantees that, for all possible states the environment can
reach after π’s execution, all program transitions outgoing from t′

(according to δ) can still be realized by a conditional plan (pos-
sibly returned by the function itself). Roughly speaking, the plan
returned is a witness of a given agent planning program’s realiz-
ability or, equivalently, of the fact that t 
PLAN S. The function
in question is referred to as agent planning program realization and
can be formally defined as follows.

Definition 4 (Agent Planning Program Realization). Let T be
an agent planning program and D a dynamic domain such that
T is realizable in D. A realization of program T in domain D
is a partial function Ω : 2P × δ �→ Π such that, for all pairs

〈t, S〉 ∈
PLAN and all transitions t
〈ψ,φ〉
−→ t′ in T , the conditional

plan Ω(S, 〈t, ψ, φ, t′〉) achieves goal φ and maintains ψ from S,

and preserves 
PLAN from 〈t, S〉 for transition t
〈ψ,φ〉
−→ t′. �

Informally, for each requested transition of the planning program,
its realization outputs a correct conditional plan that will not only
satisfy the current goals’ request, but will also guarantee that all
possible requests issued in the future will be fulfilled. The problem
we are concerned with is then: how can such a function be built?

3. AN EXAMPLE
Consider a researcher’s everyday-life domain. The researcher

moves among four locations, namely home, the department’s park-
ing lot, the department building and the pub, by either driving her
car, taking a bus, or just walking. Due to highways, traffic restric-
tions, and distances, not all alternatives are available from every lo-
cation. For instance, walking from home to the department building
or to the department’s parking place is not feasible due to (long) dis-
tance. Similarly, the researcher may not drive her car directly into
department building, as campus circulation is restricted to buses
only. In Figure 1(a), all allowed movements are depicted.

Besides the location of the researcher agent, there are other fea-
tures in the domain (not shown in the figure though). For example,
each time the car changes location, it consumes some amount of
fuel depending on roads’ (unpredictable) traffic conditions. With
each trip, the car’s tank level (full, low, or empty) may stay the same
or go from full to low and from low to empty. The car tank can be
unconditionally brought to its full level by going to the gas station.
For simplicity, though, such activity is not explicitly modeled and
we simply assume an action fill, executable when the researcher
and the car are co-located, that fills the fuel tank instantaneously.

Let us formalize this dynamic domain D = 〈P, 2P , A, S0, ρ〉.
We do so by resorting to PDDL 3.0 enriched with construct oneof,
so as to capture nondeterministic effects.1 Figure 2 shows a frag-
1Construct oneof was proposed for the Fifth International Plan-

ment of the PDDL specification for our domain. The first part, lines
1-11, initializes the domain problem, called researcherWorld,
by stating types (e.g., loc), constants (e.g., home), and predi-
cates. In particular, three parametric unary predicates are used,
namely, myLoc (i.e., the current location of the agent), carLoc
(i.e., the current location of the car), and fuel (i.e., the current
car’s fuel level). An extra predicate drove is used to state that the
agent has just drove her car. When all these predicates are fully
grounded with constants, the actual propositions in P are obtained
(e.g., myLoc(pub)).

Next, lines 12-32 define the action goByCar, which takes the
destination as an input parameter ?d of type loc. Its precondition
(lines 14-20) requires (a) a non-empty fuel tank; (b) a source and
destination other than the department building (recall it is not al-
lowed to drive on campus); and (c) the car and researcher to be at
the same place. As for the action’s effects (lines 21-31), we have:
(a) the researcher and the car’s locations change to the destination
location (line 23-26); (b) the researcher has just drove her car (line
23);2 and (c) the fuel level becomes either full or low, if previously
full (line 27-28) or either low or empty, if previously low (line
29-30). Observe the use of construct when to model conditional
effects and the use of construct oneof to represent the nondeter-
ministic dynamics of predicate fuel—exactly one of the effects
listed inside oneof must apply. As with predicates, actions are
parametric; when fully "grounded,” they yield the environment set
of actions A. Observe that when an action is grounded, all propo-
sitions in its body are grounded as well. The domain transition
relation ρ is obtained by executing all possible ground actions in
all environment’s state. Finally, we consider the initial state S0 as
part of the domain description (line 34): both the researcher and
the car are at home, with the car’s tank being full.

Next, imagine that the researcher agent wants to set up a plan that
allows her to go to work and, after work, maybe drop by the pub
before heading back to home. Of course, she needs to make sure
the car never runs out of fuel and is always at home at the end of the
day. Sometimes she may want to go to the pub directly from home
(e.g., on weekends). More interesting, for safety reasons, the agent
should not be driving after being in the pub. Such an agent planning
program is depicted in Figure 1(b); each transition is labeled with
a tuple 〈ψ, φ〉 encoding the maintenance and achievement goals ψ
and φ, respectively. Observe that, to represent the above constraint
of avoiding driving after drinking at the pub, a maintenance goal
¬Drove is included in the transition from state t2 to state t0.

Thus, the question we face is: can the researcher agent carry
out such a program, and if so, how? Of course, the agent wants the
program to work no matter how nondeterministic actions turns out
to be as the domain evolves. A trivial solution would be to always
travel by bus. But what if buses become unexpectedly unavailable,
e.g., due to driver strikes?3 In such a case, the car would be needed
in order for the researcher to reach the department. Then, should
she wish to go for a beer after work, she could not go there directly
by driving her car, as driving back home from the pub is disallowed
by the program (see ¬Drove maintenance goal in the corresponding
transition) and she may not leave the car behind at the pub by walk-
ing back to home. Consequently, a successful plan would require
the agent to pass by home and leave the car there, before moving to
the pub by either walking or taking the bus.

ning Competition to model actions with nondeterministic effects.
2Each time a traveling action other than goByCar is performed
(e.g., goByBus), predicate Drove becomes false.
3This is currently not modeled in our example, but can easily be
accounted for in the domain as non-deterministic events.
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home parking dept

pub

car walk

bus

walk
bus

car
walk
bus

car

(a) Researcher’s world map.

t0

t1

t2

〈¬Fuel(empty),MyLoc(dept)〉

〈¬Fuel(empty),MyLoc(home) ∧ CarLoc(home)〉

〈¬Fuel(empty),MyLoc(pub )〉

〈¬Fuel(empty) ∧ ¬Drove,MyLoc(home) ∧ CarLoc(home)〉

〈¬Fuel(empty),MyLoc(pub)〉

(b) Researcher’s planning program.

Figure 1: Planning program for a researcher’s everyday-life routine.

1 (define (domain researcherWorld)
2 (:requirements :typing :equality ... )
3 (:types loc fuel_level)

4 (:constants
5 home parking dept pub - loc
6 full low empty - level)

7 (:predicates
8 (myLoc ?l - loc)
9 (carLoc ?l - loc)
10 (fuel ?l - level)
11 (drove))

12 (:action goByCar
13 :parameters (?d - loc)
14 :precondition
15 (and
16 (not (fuel empty))
17 (not (carLoc dept))
18 (not (= ?d dept))
19 (exists (?l - loc) (and (myLoc ?l) (carLoc ?l)))
20 )
21 :effect
22 (and
23 (and (myLoc ?d) (carLoc ?d) (drove))
24 (forall (?l - loc)
25 (when (not (= ?l ?d))
26 (and (not (myLoc ?l)) (not (carLoc ?l)))))
27 (when (fuel full)
28 (oneof (fuel full)(fuel low)))
29 (when (fuel low)
30 (oneof (fuel low)(fuel empty)))
31 )
32 )
33 ; ... (other actions)
34 (:init (myLoc home) (carLoc home) (fuel full))
35 )

Figure 2: Researcher’s world domain PDDL specification.

Finally, the agent needs to guarantee that the car never runs out
of fuel. To do so, every successful plan is such that, when the
car’s tank level becomes low, the tank is filled out before the car
is used again (otherwise the agent might risk violating the program
requirement).

4. REACTIVE SYNTHESIS IN LTL
Linear Temporal Logic (LTL) is a well-known logic used to spec-

ify dynamic or temporal properties of programs, see e.g., [20]. For-
mulas of LTL are built from a set P of atomic propositions and are
closed under the boolean operators, the unary temporal operators
© (next), ♦ (eventually), and � (always, from now on), and the
binary temporal operator until (which in fact can be used to express

both © and �, though it will not be used here). LTL formulas
are interpreted over infinite sequences σ of propositional interpre-
tations for P , i.e., σ ∈ (2P)ω . The set of (true) propositions at
position i is denoted by σ(i) , that is, σ = σ(0), σ(1), . . .. If σ
is an interpretation, i a natural number, and φ is an LTL formula,
we denote by σ, i |= φ the fact that φ holds in model σ at posi-
tion i, which is inductively defined as follows (here, p ∈ P is any
proposition and φ, ψ any LTL formulas; we omit until for brevity):

σ, i |= p iff p ∈ σ(i);
σ, i |= φ ∨ ψ iff σ, i |= φ; or σ, i |= φ ∨ ψ;
σ, i |= ¬φ iff σ, i �|= φ;
σ, i |= ©φ iff σ, i+1 |= φ;
σ, i |= ♦φ iff for some j ≥ i, we have that σ, j |= φ;
σ, i |= �φ iff for all j ≥ i, we have that σ, j |= φ.

An interpretation σ satisfies φ, written σ |= φ, if σ, 0 |= φ. Stan-
dard logical tasks such as satisfiability or validity are defined as
usual, e.g., a formula φ is satisfiable if there exists an interpreta-
tion that satisfies it. Checking satisfiability or validity for LTL is
PSPACE-complete.

Here we are interested in a different kind of logical task, which
is called realizability, or Church problem, or simply synthesis [20,
12]. Namely, we partition P into two disjoint sets X and Y . We
assume to have no control on the truth value of the propositions
in X , while we can control those in Y . The problem then is: can
we control the values of Y such that for all possible values of X
a certain LTL formula φ remains true? More precisely, interpre-
tations now assume the form σ = (X0, Y0)(X1, Y1)(X2, Y2) · · · ,
where (Xi, Yi) is the propositional interpretation at the i-th po-
sition in σ, now partitioned in the propositional interpretation Xi

for X and Yi for Y . Let us denote by σX |i the interpretation σ
projected only on X and truncated at the i-th element (included),
i.e., σX |i = X0X1 · · ·Xi. The realizability problem checks the
existence of a function f : (2X )∗ → 2Y such that for all σ with
Yi = f(σX |i) we have that σ satisfies the formula φ. The synthesis
problem consists in actually computing such a function. Observe
that in realizability/synthesis we have no way of constraining the
values assumed by the propositions in X : the function we are look-
ing for only acts on propositions in Y . This means that the most in-
teresting formulas for the synthesis have the form ϕa → ϕr, where
ϕa captures the “relevant” assignments of the propositions in X
(and Y) and ϕr specifies the property we want to assure for such
relevant assignments. The realizability (and actual synthesis) are
2EXPTIME-complete for arbitrary LTL formulas [12]. However,
recently, several well-behaved patterns of LTL formulas have been
identified, for which efficient procedures based on model checking
technologies applied to game structures can be devised. Here, we
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shall focus on one of the most general well-behaved patterns, called
“Generalized Reactivity (1)” or GR(1) [11]. Such formulas have
the form ϕa → ϕr, with ϕa and ψr of the following shape

ϕa: Φ[X ,Y] ∧
∧

j �Φj [X ,Y,©Φ[X ]] ∧
∧

k �♦Φk[X ,Y],

ϕr: Φ[X ,Y] ∧
∧

j �Φj [X ,Y,©Φ[X ,Y]] ∧
∧

k �♦Φk[X ,Y],

where Φ[Z] (possibly with subscript) stands for any boolean com-
bination of symbols from Z. Notice that: (i) with the first conjunct,
we can express initial conditions; (ii) with the second (big) con-
junct, we can express transitions —and we have the further con-
straint that in doing so within ϕa we cannot talk about the next
value of the propositions in Y; and (iii) with the third (big) con-
junct, we can express fairness conditions of the form “it is always
true that eventually something holds.” For such formulas we have
the following result.

Theorem 1 ([11]). Realizability (and synthesis) of GR(1) LTL for-
mulas ϕa → ϕr can be determined in time O((p∗q∗w)3), where p
and q are the number of conjuncts of the form �♦Φ in ϕa and ϕr ,
respectively,4 and w is the number of possible value assignments of
X and Y under the conditions of ϕa’s first two conjuncts.

5. SOLVING PLANNING PROGRAMS
We now show how to compute a realization of an agent planning

program by reducing it to synthesis of a GR(1) LTL formula Υ.
The reader should keep in mind that, although the reduction can be
informally understood as a set of constraints on the strategy to get
the solution, its formal justification is simply Theorem 2, stating its
soundness and completeness.

The intuition behind the reduction is as follows. At some point
in time, the agent planning program T and environment D are in
one of their states, say t and S, respectively. T requests a transition

t
ψ/φ
−→ t′ to be realized. The program realization then builds a plan

η executable in S that satisfies two constraints. First, when the plan
is executed in S, maintenance goal ψ may not be violated. Second,
upon execution completion of plan η, program T moves to state t′

and D must be in a state S′ such that: (i) φ holds and (ii) for all
transitions outgoing from t′ (i.e., all possible T next requests), a
new plan exists which satisfies the above two constraints.

We start building the GR(1) LTL formula Υ = ϕa → ϕr by
specifying the sets of uncontrolled and controlled propositions X
and Y , respectively, and then build assumption formula ϕa and re-
quirement formula ϕr .

Uncontrolled and controlled propositions The set of uncon-
trolled propositions X is the union of the following sets:

• XP = P , that is, the propositions p in domain D;

• XT = T , that is, one proposition for each program state t
denoting the current state of T ;

• Xr = {reqφψ | 〈t, ψ, φ, t′〉 ∈ δ}, that is, one proposition for

each program transition, where reqφψ states that the agent, ac-
cording to program T , is (currently) asking for the achieve-
ment of goal φ while maintaining goal ψ.

The set of controlled propositions Y contains set YA = A, that
is, one proposition a for each action in the domain D stating that
action a is to be executed next, plus a special proposition last stat-
ing that the last action of the current plan is to be executed next.
4We assume that both ϕa and ϕr contain at least one conjunct of
such a form, if not, we vacuously add the trivial one �♦�.

Assumption formula Next, we build a formula of the form
ϕa = ϕa

init ∧ ϕa
trans capturing the assumptions on the overall

framework the program realization is acting on. For legibility, we
define some syntactic shortcuts:

• for each D state S ∈ 2P we define a propositional formula
γS =

∧n
i=1 li, where li = pi if pi ∈ S; and li = ¬pi

otherwise;

• for each program state t ∈ T , we define a propositional for-
mula reqt =

∨
〈t,ψ,φ,t′〉∈δ req

φ
ψ , representing the fact that

the agent is requesting at least one transition available in pro-
gram state t.

The assumption formula is meant to encode how the overall sys-
tem is expected to behave; technically, it encodes the synchronous
execution of dynamic domain D and program T .

Propositional formula ϕa
init = ϕS0

∧ t0 characterizes the (legal)
initial state of the overall system, by requiring D and T to start
in their respective initial states. Note no constraint on proposition
last nor on any proposition in Xr are imposed here.

LTL formula ϕa
trans =�transD ∧ �transT characterizes the

assumptions on the overall system evolution. Specifically, transD
defines the “rules” for the domain and transT defines those for the
program. The former is defined as follows:

transD =
∧

S∈2P ,a∈YA

[γS ∧ a → ©
∨

{S′|〈S,a,S′〉∈ρ}

γS′ ].

Here, each conjunct states that if the world is in state S and action a
is to be executed, then one of the possible states w.r.t. domain tran-
sition relation ρ is indeed the next state of the world. (We assume
that an empty set of disjoins is equal to false.)

Formula transT , in turn, is built as the conjunction of the fol-
lowing formulae:

•
∨

t∈XT
[t∧

∧
t′∈XT \{t} ¬t

′], that is, the program is in exactly
one of its states;

•
∧

t∈XT
[t → reqt], that is, in each state, the agent execut-

ing the program ought to be requesting some of the possible
transition available in current state;

•
∧

req
φ
ψ
,req

φ′

ψ′
∈Xr,req

φ
ψ
�=req

φ′

ψ′

[reqφψ → ¬reqφ
′

ψ′ ], that is, at

most one program transition can be requested at a time;

•
∧

〈t,ψ,φ,t′〉∈δ[t ∧ req
φ
ψ ∧ last → ©t′], that is, if transition

t
〈ψ,φ〉
−→ t′ is currently being requested and the last action of

current plan is to be executed next, then the program shall
move next to its successor state t′;

•
∧

t∈XT
[(t∧¬last) → ©t], that is, the program remains still

if the current plan is still not completed;

•
∧

t∈XT ,〈t,ψ,φ,t〉∈δ[(t ∧ req
φ
ψ ∧ ¬last) → ©req

φ
ψ], that is,

the agent remains requesting the same transition if the current
plan is still not completed.

Requirement Formula Let us now build formula ϕr = ϕr
trans ∧

ϕr
goal, which captures the requirements for the module to be syn-

thesized, i.e., the program realization: an automaton which, at each
step, selects an action for execution.

LTL formula ϕr
trans = �(ϕact

trans ∧ ϕlast
trans ∧ ϕmaint

trans ) encodes
constraints on action executions and how agent planning programs
are “fulfilled.” Namely:
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• ϕact
trans =

∨
a∈YA

[a ∧
∧

a′∈YA,a′ �=a ¬a
′], that is, one and

only one domain action is expected to be executed at each
step;

• ϕlast
trans =

∧
req

φ
ψ
∈Xr

[reqφψ∧last → ©φ], that is, upon plan

completion, achievement goal φ, in the requested transition,
is indeed achieved;

• ϕmaint
trans =

∧
req

φ
ψ
∈Xr

[reqφψ → ψ], that is, maintenance goal

ψ, in the requested transition, is respected along plans’ exe-
cutions.

Finally, by using simply one fairness conjunct, we are able to en-
code the synthesis objective, that is, the realization of the achieve-
ment goals and preservation of maintenance ones. Formally, we
have:

ϕ
r
goal = � � last.

That is, we require that each plan is always eventually completed.
This implies, in turn, that all requested achievement goals are (al-
ways eventually) fulfilled.

It is not hard to check that the LTL formula Υ obtained is in-
deed in GR(1) format. The results from [11] are therefore directly
available and we then able to prove our main result:

Theorem 2 (Soundness & Completeness). There exists a solu-
tion to the agent planning program T in the dynamic domain D
iff the LTL formula Υ, constructed as above, is realizable.

That is, checking the realizability of Υ is a sound and complete
technique for solving the agent planning program in the domain of
concern. We stress that by solving realizability with the techniques
in [11] we do get an actual solution for the realization of the plan-
ning program, not merely verify its existence.

Analyzing the structure of Υ, we get that: (i) ϕa contains no
subformulas of the form �♦μ; (ii) ϕr contains just one such sub-
formulas; (iii) the number of possible value assignments of X and
Y under the conditions of ϕa → ϕr is O(|2P | ∗ |δ|) (observe that
variables that represent the transitions in an agent planning program
are pairwise disjoint). Consequently, from Theorem 1, we get that
checking the existence of a solution for the agent planning pro-
gram T in a dynamic domain D can be done in O((|2P |∗ |δ|)3). In
fact, such a bound can be refined by replacing 2P with the number
of environment’s states that are actually reachable from the initial
state. Moreover, since we have no fairness formula in assumption
formula ϕa, we just need to check a fairness constraint and not a
strong fairness one, hence by inspecting the proof of Theorem 1,
we actually get a tighter upperbound, namely O(|2P | ∗ |δ|). Now,
considering that checking the existence of a conditional plan for an
achievement goal in a nondeterministic dynamic domain with full
observability is EXPTIME-hard [14], we get a tight computation
complexity characterization for solving agent planning problems.

Theorem 3 (Complexity). Checking the existence of a solution
for a agent planning program in a dynamic domain is EXPTIME-
complete.

It is interesting to notice that, in spite of the sophistication of the
problem considered, the complexity of solving a agent planning
program is essentially the same as that of conditional planning with
full observability, a variant of which is solved when realizing each
transition of a planning program. In other words, at least from
the computational point of view, the additional sophistication in-
troduced by agent planning programs essentially does not require
any additional computational effort.

6. BEHAVIOR-BASED PROGRAMMING
So far, we have assumed that, while fulfilling the incoming goal

requests from the agent, executable actions (that is, action transi-
tions compatible with the environment) are always available. How-
ever, it is usually the case that agents act in the environment only
through certain actuators, such as a gripper, a motor, or a web-
browser. We will generically model such components as behaviors
(see below). Besides acting as action executors, thus exposing envi-
ronment actions to the agent, behaviors may have their own internal
logic and local actions (e.g., a camera needs to be turned on before
a picture can be taken). So, in this section, we consider the problem
of realizing an agent planning program in a setting where actions
are made available only via a set of available nondeterministic be-
haviors. Nondeterminism captures the fact that these behaviors are
abstractions of actual components (typically, physical devices or
software modules), and hence some of their internal details may
not be captured.

In such an extended framework, besides the dynamic domain D
as before, we assume a set of available behaviors modeling the
components that the agent has at its disposal. Formally, a behavior
over a dynamic domain D is a tuple B = 〈B,O, b0, 
〉, where:

• B is the finite set of behavior’s states;

• O is the finite set of behavior’s actions s.t. O ∩ A �= ∅;

• b0 ∈ B is the behavior’s initial state;

• 
 ⊆ B × O × B is the behavior’s transition relation. We
freely interchange notations 〈b, a, b′〉 ∈ 
 and b

a
−→ b′ in B.

The idea is that, at each state, a behavior offers the agent a set
of possible actions from its set O. The agent can interact with the
environment D only by means of its available behaviors. When a
behavior is instructed to perform an action in the environment, the
action is executed and both the behavior in question and the envi-
ronment evolve, synchronously and possibly nondeterministically,
to their successor states, according to their respective transition re-
lations. So, for an action to be carried out, it needs to be both
compatible with the environment and (currently) available in some
behavior. As for actions that are local to a behavior, that is, actions
in O \ A (e.g., turning on the camera), they yield no change in the
external environment and no executability requirement is enforced
on it (though the actions still need to be enabled on the behavior).

The new problem is a straightforward extension of the original
one: can an agent planning program T be realized in a dynamic
domain D by means of a set of available behaviors B1, . . . ,Bn?

Security Door Example
In a bank agency, customers’ security boxes are placed in

a security room. The room’s door can be locked/unlocked
and open/closed. The door can be opened only if unlocked
and locked only if closed. (Un)locking the door when it is
(un)locked is allowed, but has no effect. The security room
also includes a light, that can be in state on or off. Our en-
vironment D is indeed the room, i.e., the system composed
of the door and the light seen as a whole. From an abstract
viewpoint, it consists of the following parts: 5 (i) a set of propo-
sitions P = {Locked,Open,On}; (ii) a set of actions A =
{lock,unlock,open, close,switchOn, switchOff}
with self-explanatory meaning; (iii) an initial state S0 = {Locked};
and (iv) a transition relation ρ describing the joint dynamics of the

5Of course, a PDDL specification could be also provided.
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Figure 3: Graphical representation of the security room example.

door and the light, depicted in Figures 3(a) and 3(b), respectively,
which evolve independently.

In this scenario, actions are made accessible only through two
actuators, model as behaviors, that are able to interact directly with
the door and the light. Figure 3(c) shows the door behavior. Note
that actions lock, unlock, logout, and open become enabled
in the behavior, only after a successful authentication in the behav-
ior itself occurs via local action auth (only registered customers
have access to the security room). To avoid customers from closing
the door without logging out, the customer is automatically logged
out when the behavior executes a close action. Hence, if the cus-
tomer is inside the room and closes the door, she needs to authen-
ticate again before opening the door and getting out of the room.
As for the light switch, for simplicity, we just assume a behavior
whose evolution matches the light’s dynamics (see Figure 3(b)).

Observe that while an action may be enabled in a behavior, it
may not be enabled in the environment, and hence, it cannot be
carried out. For instance, if the door behavior is in state s1 and the
environment is in (initial) state S0 = {Locked}, action open still
cannot be performed by the behavior.

Next, as in the previous setting, an agent planning program can
be specified to capture the desired ultimate behavior of an au-
tonomous agent. In our case, customer agents are meant to pro-
tect their privacy by closing the door when accessing their security
boxes. Also, due to bank security policy, they are required never
to lock the door while inside the room, but to lock it when they are
done. So, in order to protect their privacy and respect the bank’s
policies, customers should (i) open the door (and enter the room);
(ii) switch the light on and close the door without locking it (and
access their security boxes); (iii) re-open the door (in order to get
out); and finally once outside (iv) close and lock the door, besides
leaving the light off. The planning program corresponding to such
a protocol is shown in Figure 3(d).

Compiling behaviors away
The problem now is how to provide the agent system with a (set

of) plan(s) to realize a planning program by acting in the domain
only through the available behaviors.

It turns out that realizing agent planning programs in the ex-
tended setting can be easily reduced to the original component-free
problem from Section 2. To do so, we (a) suitably embed the be-
havior descriptions into the environment; and then (b) generalize
the notion of conditional plans, requiring them to return both the
action to be executed next and on which behavior.

Let B1, . . . ,Bn, with Bi = 〈Bi, Oi, bi0, 
i〉, be the set of avail-
able behaviors over the dynamic domain D = 〈P, 2P , A, S0, ρ〉.
To encode each Bi into D, we build a new (extended) dynamic do-

main D′ = 〈P ′, 2P
′

, A′, S′
0, ρ

′〉 such that:

1. P ′ = P ∪
⋃n

i=1 Pi, where Pi = {b | b ∈ Bi} is a set of new
propositions representing the different states of available be-

havior Bi.
6 (wlog we assume sets P and Bi are all disjoint.)

2. S′
0 = S0∪{b10, . . . , bn0}, that is, the initial state is extended

to include the initial states of all behaviors.

3. A′ = A ∪
⋃n

i=1 Oi, that is, we extend the domain actions to
include all behaviors’ local actions.

4. ρ′ ⊆ 2P
′

× A′ × I × 2P
′

, where I = {1, . . . , n}, such that

for each S, S′ ∈ 2P
′

, 〈S, a, i, S′〉 ∈ ρ′ iff:

• for all i ∈ I , both S ∩ Pi and S′ ∩ Pi are singletons,
that is, S and S′ represent the fact that each behavior is
in exactly one of its states;

• 〈S∩P, a, S′∩P 〉 ∈ ρ, that is, D state S∩P—the pro-
jection of S on P—enables a’s execution with possible
successor state S′ ∩ P ;

• 〈b, a, b′〉 ∈ 
i, for S ∩ Pi = {b} and S′ ∩ Pi = {b′},
that is, Bi enables a’s execution in state b, with b′ as a
possible successor state.

That is, ρ′ essentially represents the synchronous product of
D with the asynchronous product of all behaviors Bi’s.

Observe that extending the transition relation as above has an
impact on the definition of domain’s histories. Indeed, state transi-

tions are no longer of the form Sj a
−→ Sj+1, but rather of the form

Sj a,i
−→ Sj+1. However, generalizing such notions to the extended

domain is straightforward and we skip that here.
Next, the notion of plans also needs to be generalized, as these

are not only required to output the next action to be executed, but
how it is going to be executed, that is, the specific behavior that
will actually carry it out in the environment. By referring to the
set of all D′’s (generalized) histories as H′, we define a behavior-
based conditional plan as a function π : H′ �→ A′ × I . Again,
the notions of plan execution, finite plan, and complete execution
extend naturally to this behavior-based setting.

At this point, it can be easily seen that, by introducing a mi-
nor modification to the LTL encoding so as to integrate index i, the
selected behavior to carry on the next chosen action, one can essen-
tially adopt the same resolution strategy used in the basic scenario
to realize agent planning programs in the behavior-based setting.
Note that the original framework with no actuators is trivially cap-
tured by the extended one, by assuming a single stateless behavior
that always enables all domain actions.

Finally, as for complexity, observe that, when n behaviors are
present, assuming a logarithmic encoding of the states of the behav-
iors, we get that |P ′| = O(|P | + n ∗ log(maxni=1 |Bi|)). There-
fore, recalling that the complexity of realizing an agent planning
program is exponential in the number of domain propositions (see
Section 4 and 5), we get that also this variant of the problem can be
solved in EXPTIME.
6This can be done compactly via a logarithmic encoding of behav-
iors’ states. For legibility, though, we use the naïve encoding.
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7. CONCLUSION
This work combines automated planning and high-level agent-

oriented programming into the novel problem of synthesizing what
we call an agent planning program for execution on a planning
domain. We provided a solution by resorting to synthesis for a well-
behaved class of LTL formulas for which synthesis can be reduced
to model-checking of game structures. This allows us to leverage
on existing results and tools (including TLV7, Anzu8, and Ratsy9).

Interestingly, agent planning programs are particularly suited to
represent “routines” in contexts, such as smart-homes,10 where one
wants to continuously support a predefined set of sequences of ac-
tivities that cyclically repeat over and over.

More generally, our work shares the very same motivations as
that of HTN planning [3, 4] and other approaches to mix planning
with (agent) programming (e.g., [17, 5]), and in fact, we took such
works as an inspiration for our research. Roughly speaking, in such
works, an agent is “programmed” in a high-level manner and a final
working course of action is synthesized by performing lookahead.
Our approach is different both in the kind of problem being solved
as well as in the technique used to actually solve it. Rather than
taking a strong procedural “goal-to-do” view of agent’s goals, we
have taken instead a purely declarative view on goals. We described
agents by means of both achievement and maintainance “goal-to-
be,” rather than by tasks or processes the agent ought to carry on.
Moreover, we relied on a powerful synthesis technique that leaves
us room for interesting extensions, such as dealing with nondeter-
ministic environments under explicit fairness assumptions. Indeed,
it is worth remarking that we did not use the full power of GR(1)
specifications: the assumption formula of our formalization con-
tains no subformulae of the form �♦φ. We could consider such
kind of formulas to specify, e.g., unbounded but eventualy terminat-
ing cyclic sub-behaviors in the dynamic domain. Also, one might
consider solutions that work for all possible outcomes of nondeter-
ministic actions, provided plan executions are fair, in the sense that
they do not loop indefinitely over a same state sequence [1].

Finally, we note that in this work, we have assumed full observ-
ability on both the underlying domain and behavior states. When
the observability assumption is no longer valid, i.e., when planning
under partial observability or for conformant plans, one could still
reduce the problem to LTL synthesis [12, 7]. However, there is
no guarantee that a GR(1) formulas would be obtained, and hence
one would lose the effectiveness of the techniques for synthesis via
model checking. Such effectiveness can possibly be recovered by
some ad-hoc construction, such as an adaptation of the classical
belief construction used for planning with partial observability [14,
2], see however [16] for limitations on this approach. Looking into
this issue is an interesting direction for future research.
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